
Convolutional Neural
Networks: Introduction

Lecture 24
by Marina Barsky

Problem with number of layers
and number of neurons

• The number of parameters in NN grows very fast as we add
more layers

• If a single input vector contains n features, and we create
another layer of size m - we add n*m additional weights edges
For n=1000 and m=1000 we need to learn 1,000,000 additional weights

• Optimizing such big models is computationally expensive

• When our training examples are images, the input is already
very high-dimensional

• If we use MLP with more than 3 layers - the optimization
problem quickly becomes intractable

Convolutional Neural Network
(CNN)
• A Convolutional Neural Network (CNN) is a special kind of

Feed Forward NN that significantly reduces the number of
parameters in a deep neural network

• CNNs are used in image and text recognition where they
beat many previously established benchmarks

Recognizing local regions
of the image

• Pixels that are close to each other usually
represent the same type of information:
sky, water, leaves, fur, bricks... This
information can likely be combined into a
smaller number of features

• The parts of an image where two different
types of information “touch” one another -
represent a shape

• The idea is to train the neural network to
recognize regions of the same information
as well as the edges, and use these learned
features as new less-dimensional vectors
for classifying images

Detecting image patterns

• We can split the image into square patches using a sliding
frame approach

• We can then train multiple smaller models at once, each
small model receiving a square patch as input

• The goal of each small model is to learn to detect a
specific kind of pattern in the input patch

• For example, one small model will learn to detect the sky,
another one will detect the grass, the third one will detect
edges of a building...

The “filter” idea

• If we train a network using a set of labeled images (say,
set of cats) the model will learn a set of local patterns
which are most common to all cats

• We call these local patterns filters

• The CNN learns the filter shapes on its own during training
- all you need to decide is the size of each filter, and the
network will learn what each filter should look like

• Later, during classification, it will apply each filter to a new
image and compute the output - image class

Comparing input patch to a filter

• Once you decide on the size of each filter,
the regular training will produce the
optimal values for each filter matrix

• Let’s assume - for simplicity - that the
input image is black and white, with 1
representing black and 0 representing
white pixels

• Assume that our patches are 3 by 3 pixels
(p = 3). Some patch could then look like
matrix P (for “patch”)

• Let’s say we want to detect a pattern
called “cross” in the image data. We
initialize the matrix F (filter) with some
random values

0 1 0

P= 1 1 1

0 1 0

Patch in a black-and-
white image

0 2 3

F= 2 4 1

0 3 0

Filter initialized

Learning matrix F

• The small regression model that will
detect “cross” patterns (and only them)
would need to learn a 3 by 3 parameter
matrix F where parameters at positions
corresponding to the 1s in the input
patch would be positive numbers,
while the parameters in positions
corresponding to 0s would be close to
zero

0 1 0

P= 1 1 1

0 1 0

Patch in a black-and-
white image

0 2 0

F= 2 4 1

0 3 0

Filter: to be learned from data

Learning matrix F

• The learning proceeds by calculating the
dot-product between matrices P and F
and then summing up all values from the
resulting vector

• The higher the value, the more similar F
is to P:

P · F = [0 · 0 + 2 · 1 + 0 · 0, 2 · 1 + 4 · 1 + 3 · 1,
3 · 0 + 1 · 1 + 0 · 1] = [2, 9, 1]

The sum is 2 + 9 + 1 = 12

• This operation — the dot product
between a patch and a filter and then
summing the values — is called
convolution

0 1 0

P= 1 1 1

0 1 0

Patch in a black-and-
white image

0 2 3

F= 2 4 1

0 3 0

Filter: randomly initialized

Optimizing (matching) filter to a
patch

• If our input patch P had a different
pattern - then the convolution would
give a lower result: 0 + 9 + 0 = 9

• The more the patch “looks” like the
filter, the higher the value of the
convolution is

• There’s also a bias parameter b
associated with each filter F which is
added to the result of a convolution
before applying the nonlinearity

1 1 1

P= 0 1 0

0 1 0

Patch in a black-and-
white image

0 2 3

F= 2 4 1

0 3 0

Filter: randomly initialized

Computing convolution for the
entire image

• One hidden layer of a CNN consists of multiple
convolution filters (each with its own bias parameter), just
like one layer in a vanilla NN consists of multiple units

• Each filter of the first (leftmost) hidden layer slides — or
convolves — across the input image, left to right, top to
bottom, and convolution is computed for each sliding
input frame

• So each neuron in a CNN layer is a filter which learns a
single pattern. The number of such units generally is much
smaller than the number of original pixels

Filter convolving across the image
1 0 0 1

1 0 1 0

1 1 0 0

0 1 0 1

1 0 0 1

1 0 1 0

1 1 0 0

0 1 0 1

1 0 0 1

1 0 1 0

1 1 0 0

0 1 0 1

1 0 0 1

1 0 1 0

1 1 0 0

0 1 0 1

-1 2

4 -2

1

-1 2

4 -2

1

-1 2

4 -2

1

-1 2

4 -2

1

4

4 -1

4 -1 7

4 -1 7

2

● As a result of this convolution,
instead of a 4x4 image matrix
we get a 3x3 matrix

● This matrix becomes an input
to the next hidden layer

● A nonlinearity (ReLU) is
applied to the [sum of the
convolution plus the bias]

● The numbers for each filter
matrix F and the value of the
bias term b, are found by the
gradient descent with
backpropagation

Volume: collection of matrices

• Each layer with m filters produces m matrices of size pxp
which serve as an input for the next hidden layer

• If the next layer is also a convolution layer, then layer i + 1
treats the output of the preceding layer i as a collection of
m images

• Such a collection is called a volume. Each filter of layer i + 1
convolves the whole volume produced by filter i

• The convolution of a patch of a volume is simply the sum
of convolutions of the corresponding patches of individual
matrices in this volume

The volume convolves as a single
input

3 1 -2 4

4 1 0 5

12 2 1 0

1 -2 -1 2

2 -1 0 1

-3 1 1 0

1 1 0 0

0 1 0 1

1 -1 0 1

2 -1 1 0

1 1 0 0

0 1 0 1

-2 3

5 -1

-2

-3

Volume

(-2 · 3 + 3 · 1 + 5 · 4 + -1 · 1) +(-2 · 2 + 3 · (-1) + 5 · (-3) + -1 · 1) + (-2 · 1 + 3 · (-1) + 5 · 2 + -1 · (-1)) + (-2)= -3

Input image as a volume of 3
color channels

CNNs also often get volumes as input, since an image is
usually represented by three channels: R, G, and B, each
channel being a monochrome picture

CNN: parameters

This is just a very high-level picture of the CNN architecture

Other essential features include strides, padding, and pooling

• Strides and padding are hyperparameters of the
convolution filter and the sliding window

• Pooling example: max pooling

All this is designed to reduce the number of parameters of a
CNN even more

Learn more:

https://e2eml.school/how_convolutional_neural_ne
tworks_work.html

https://machinelearningmastery.com/how-to-
visualize-filters-and-feature-maps-in-convolutional-
neural-networks/

https://machinelearningmastery.com/convolutional-
layers-for-deep-learning-neural-networks/

https://e2eml.school/how_convolutional_neural_networks_work.html
https://machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-in-convolutional-neural-networks/
https://machinelearningmastery.com/convolutional-layers-for-deep-learning-neural-networks/

Neural Nets:
generalization and overfitting

The greatest challenge you will face with deep learning is
convincing your neural network to generalize instead of just
memorize

Exactly as before you will detect the overfitting if the
difference in accuracy between train and test set is significant

• Same regularization as before: L1 and L2 norm
• NN-specific regularization:

• Early stopping
• Dropout

Early stopping

• Stop training the network when it starts getting worse

• Neural networks, even though they are randomly generated, start
by learning the biggest, most broad sweeping features before
learning too much about the noise

• Most of the signal is found in the more general characteristics (for
images - big shapes and color)

• We don't let the network train long enough to learn the details of
the training set

How do we know when to stop?

The only real way to know is to run the model on validation
data and stop when the error rate on a validation set starts
increasing

Industry Standard Regularization:
Dropout

• Randomly turn neurons off (setting to 0) during training

• At each training epoch, individual nodes are either dropped out of
the net with probability 1-p or kept with probability p. Incoming
and outgoing edges to a dropped-out node are also removed

• This forces train random subnetworks

Millions of random subnetworks
are probably telling the truth

• What happens when you take a big neural network and only use a
small part of it? It behaves like a small neural network!

• However, when we do this randomly over potentially millions of
different "sub-networks", the sum total of the entire network still
maintains the expressive power of the complex NN!

• Dropout is a form of training a bunch of small networks and
averaging the result

Different subnetworks learn
different noise

• NN always start out randomly and learn by trial and error

• This means that every neural network learns just a little bit
differently: no two neural networks ever produce exactly the same
weights

• It means that when you overfit two neural networks, no two neural
networks overfit in exactly the same way

• Each neural network starts by predicting randomly, then adjusting
its weights to make better predictions, and each network inevitably
makes different mistakes, resulting in different updates

Averaging learning of subnetworks:
to detect main signal

• While it is very likely for a single unregularized neural network to
overfit to noise, each overfits to a different noise

• If you train 100 neural networks (all initialized randomly), they will
each tend to latch onto different noise but similar broad signal

• This means that if we allowed them to vote equally, their noise
would tend to cancel out, revealing only what they have all learned
in common - the important signal

Regularization for deep learning
implemented in keras

L1 L2 regularization: link

Early stopping: link

Dropout: link

https://machinelearningmastery.com/how-to-reduce-generalization-error-in-deep-neural-networks-with-activity-regularization-in-keras/
https://machinelearningmastery.com/how-to-stop-training-deep-neural-networks-at-the-right-time-using-early-stopping/
https://machinelearningmastery.com/how-to-reduce-overfitting-with-dropout-regularization-in-keras/

Experiment with Convolutional Neural Networks in
this demo:

https://github.com/mgbarsky/labs_ml_img_classific
ation/blob/main/cats_dogs_CNN.ipynb

https://github.com/mgbarsky/labs_ml_img_classification/blob/main/cats_dogs_CNN.ipynb

What is going on inside?
What does the network learn about images?

How and what does it learn?

The exact way neural networks see and interpret the world
remains a black box

We want to better understand of how exactly they
recognize specific patterns or objects in order to:

• improve the quality of NN learning
• solve legal problems since in many cases the outputs

have to be interpretable by humans

How CNN sees images after
learning

• Neural networks learn to transform images into
successive layers of increasingly meaningful and complex
representations (filters)

• We can think of a deep network as a “multistage
information-distillation operation, where information
goes through successive filters and comes out increasingly
purified”. (François Chollet, “Deep Learning with Python”)

• We can generate patterns that maximize the mean
activation of a chosen feature map in a certain layer

Experiment: understanding
learned patterns (filters)

• Get a network which already learned to recognize
thousands of image types
• Pre-trained model is available from torchvision.models
• Data is from http://www.image-net.org/
• The network is VGG-16

• The goal is NOT to train the model, but use it in an
evaluation mode

• Then show an image with random pixels to the model and
optimize the pixel values to best match each filter at each
hidden level (Erhan, D. et al. “Visualizing Higher-Layer
Features of a Deep Network”, 2009).

http://www.image-net.org/

VGG-16
The idea: optimize pixels in a
random image to match one
of these filters

Here is a blog and the code

https://towardsdatascience.com/how-to-visualize-convolutional-features-in-40-lines-of-code-70b7d87b0030
https://github.com/fg91/visualizing-cnn-feature-maps/blob/master/filter_visualizer.ipynb

Recurrent neural networks

Used to label, classify, or generate sequences

• Labeling a sequence means predicting a class to each feature
vector in a sequence

• Classifying a sequence means predicting a class for the entire
sequence

• Generating a sequence means to output another sequence (of a
possibly different length) somehow relevant to the input sequence

Recurrent neural
networks
These are generally discussed in the Algorithms on Strings or
possibly in the Natural Language Processing courses

